Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Dev Biol ; 483: 76-88, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34973174

RESUMO

The chick limb bud has plasticity to reconstruct a normal skeletal pattern after a part of mesenchymal mass is excised to make a hole in its early stage of development. To understand the details of hole closure and re-establishment of normal limb axes to reconstruct a normal limb skeleton, we focused on cellular and molecular changes during hole repair and limb restoration. We excised a cube-shaped mass of mesenchymal cells from the medial region of chick hindlimb bud (stage 23) and observed the following morphogenesis. The hole had closed by 15 â€‹h after excision, followed by restoration of the limb bud morphology, and the cartilage pattern was largely restored by 48 â€‹h. Lineage analysis of the mesenchymal cells showed that cells at the anterior and posterior margins of the hole were adjoined at the hole closure site, whereas cells at the proximal and distal margins were not. To investigate cell polarity during hole repair, we analyzed intracellular positioning of the Golgi apparatus relative to the nuclei. We found that the Golgi apparatus tended to be directed toward the hole among cells at the anterior and posterior margins but not among cells at identical positions in normal limb buds or cells at the proximal and distal hole margins. In the manipulated limb buds, the frequency of cell proliferation was maintained compared with the control side. Tbx3 expression, which was usually restricted to anterior and posterior margins of the limb bud, was temporarily expanded medially and then reverted to a normal pattern as limb reconstruction proceeded, with Tbx3 negative cells reappearing in the medial regions of the limb buds. Thus, mesenchymal hole closure and limb reconstruction are mainly mediated by cells at the anterior and posterior hole margins. These results suggest that adjustment of cellular properties along the anteroposterior axis is crucial to restore limb damage and reconstruct normal skeletal patterns.


Assuntos
Padronização Corporal/fisiologia , Botões de Extremidades/citologia , Botões de Extremidades/embriologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Esqueleto/embriologia , Animais , Proteínas Aviárias/metabolismo , Núcleo Celular/metabolismo , Polaridade Celular/fisiologia , Proliferação de Células/fisiologia , Embrião de Galinha , Extremidades/embriologia , Complexo de Golgi/metabolismo , Membro Posterior/embriologia , Transdução de Sinais/fisiologia , Esqueleto/citologia , Esqueleto/metabolismo , Proteínas com Domínio T/metabolismo
2.
Sci Rep ; 11(1): 7165, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785799

RESUMO

The overexpression of hoxd13a during zebrafish fin development causes distal endochondral expansion and simultaneous reduction of the finfold, mimicking the major events thought to have happened during the fin-to-limb transition in Vertebrates. We investigated the effect of hoxd13a overexpression on putative downstream targets and found it to cause downregulation of proximal fin identity markers (meis1 and emx2) and upregulation of genes involved in skeletogenesis/patterning (fbn1, dacha) and AER/Finfold maintenance (bmps). We then show that bmp2b overexpression leads to finfold reduction, recapitulating the phenotype observed in hoxd13a-overexpressing fins. In addition, we show that during the development of the long finfold in leot1/lofdt1 mutants, hoxd13a and bmp2b are downregulated. Our results suggest that modulation of the transcription factor Hoxd13 during evolution may have been involved in finfold reduction through regulation of the Bmp signalling that then activated apoptotic mechanisms impairing finfold elongation.


Assuntos
Nadadeiras de Animais/embriologia , Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Apoptose/genética , Padronização Corporal , Regulação para Baixo , Embrião não Mamífero , Proteínas de Homeodomínio/metabolismo , Modelos Animais , Modelos Biológicos , Mutação , Transdução de Sinais/genética , Esqueleto/embriologia , Fatores de Transcrição/metabolismo , Regulação para Cima , Peixe-Zebra
3.
Elife ; 92020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33198887

RESUMO

Paired fins are a defining feature of the jawed vertebrate body plan, but their evolutionary origin remains unresolved. Gegenbaur proposed that paired fins evolved as gill arch serial homologues, but this hypothesis is now widely discounted, owing largely to the presumed distinct embryonic origins of these structures from mesoderm and neural crest, respectively. Here, we use cell lineage tracing to test the embryonic origin of the pharyngeal and paired fin skeleton in the skate (Leucoraja erinacea). We find that while the jaw and hyoid arch skeleton derive from neural crest, and the pectoral fin skeleton from mesoderm, the gill arches are of dual origin, receiving contributions from both germ layers. We propose that gill arches and paired fins are serially homologous as derivatives of a continuous, dual-origin mesenchyme with common skeletogenic competence, and that this serial homology accounts for their parallel anatomical organization and shared responses to axial patterning signals.


A common way to evolve new body parts is to copy existing ones and to remodel them. In insects for example, the antennae, mouth parts and legs all follow the same basic body plan, with modifications that adapt them for different uses. In the late 19th century, anatomist Karl Gegenbaur noticed a similar pattern in fish. He saw similarities between pairs of fins and pairs of gills, suggesting that one evolved from the other. But there is currently no fossil evidence documenting such a transformation. Modern research has shown that the development of both gill and fin skeletons shares common genetic pathways. But the cells that form the two structures do not come from the same place. Gill skeletons develop from a part of the embryo called the neural crest, while fin skeletons come from a region called the mesoderm. One way to test Gegenbaur's idea is to look more closely at the cells that form gill and fin skeletons as fish embryos develop. Here, Sleight and Gillis examined the gills and fins of a cartilaginous fish called Leucoraja erinacea, also known as the little skate. Sleight and Gillis labelled the cells from the neural crest and mesoderm of little skate embryos with a fluorescent dye and then tracked the cells over several weeks. While the fins did form from mesoderm cells, the gills did not develop as expected. The first gill contained only neural crest cells, but the rest were a mixture of both cell types. This suggests that fins and gills develop from a common pool of cells that consists of both neural crest and mesoderm cells, which have the potential to develop into either body part. This previously unrecognised embryonic continuity between gills and fins explains why these structures respond in the same way to the same genetic cues, regardless of what cell type they develop from. Based on this new evidence, Sleight and Gillis believe that Gegenbaur was right, and that fins and gills do indeed share an evolutionary history. While firm evidence for the transformation of gills into fins remains elusive, this work suggests it is possible. A deeper understanding of the process could shed light on the development of other repeated structures in nature. Research shows that animals use a relatively small number of genetic cues to set out their body plans. This can make it hard to use genetics alone to study their evolutionary history. But, looking at how different cell types respond to those cues to build anatomical features, like fins and gills, could help to fill in the gaps.


Assuntos
Nadadeiras de Animais/embriologia , Brânquias/embriologia , Crista Neural/crescimento & desenvolvimento , Rajidae/embriologia , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esqueleto/embriologia
4.
Biochem Biophys Res Commun ; 533(1): 30-35, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-32917361

RESUMO

The mechanistic/mammalian target of rapamycin (mTOR) regulates various cellular processes, in part through incorporation into distinct protein complexes. The mTOR complex 1 (mTORC1) contains the Raptor subunit, while mTORC2 specifically contains the Rictor subunit. Mouse genetic studies, including ours, have revealed a critical role for mTOR in skeletogenesis through its expression in undifferentiated mesenchymal cells. In addition, we have recently revealed that mTORC1 expression in chondrocytes is crucial for skeletogenesis. Recent work indicates that mTOR regulates cellular functions, depending on the context, through both complex-dependent (canonical pathway) and complex-independent roles (noncanonical pathway). Here, we determined that mTOR regulates skeletal development through the noncanonical pathway, as well as the canonical pathway, in a cell-type and context-specific manner. Inactivation of Mtor in undifferentiated mesenchymal cells or chondrocytes led to either severe hypoplasia in appendicular skeletons or a severe and generalized chondrodysplasia, respectively. Moreover, Rictor deletion in undifferentiated mesenchymal cells or chondrocytes led to mineralization defects in some skeletal components. Finally, we revealed that simultaneous deletion of Raptor and Rictor in undifferentiated mesenchymal cells recapitulated the appendicular skeletal phenotypes of Mtor deficiency, whereas chondrocyte-specific Raptor and Rictor double-mutants exhibited milder hypoplasia of appendicular and axial skeletons than those seen upon Mtor deletion. These findings indicate that mTOR regulates skeletal development mainly through the canonical pathway in undifferentiated mesenchymal cells, but at least in part through the noncanonical pathway in chondrocytes.


Assuntos
Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Esqueleto/embriologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Condrócitos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais , Esqueleto/metabolismo , Serina-Treonina Quinases TOR/genética
5.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244499

RESUMO

Antxr1/Tem8 is highly expressed in tumor endothelial cells and is a receptor for anthrax toxin. Mutation of Antxr1 causes GAPO syndrome, which is characterized by growth retardation, alopecia, pseudo-anodontia, and optic atrophy. However, the mechanism underlying the growth retardation remains to be clarified. Runx2 is essential for osteoblast differentiation and chondrocyte maturation and regulates chondrocyte proliferation through Ihh induction. In the search of Runx2 target genes in chondrocytes, we found that Antxr1 expression is upregulated by Runx2. Antxr1 was highly expressed in cartilaginous tissues and was directly regulated by Runx2. In skeletal development, the process of endochondral ossification proceeded similarly in wild-type and Antxr1-/- mice. However, the limbs of Antxr1-/- mice were shorter than those of wild-type mice from embryonic day 16.5 due to the reduced chondrocyte proliferation. Chondrocyte-specific Antxr1 transgenic mice exhibited shortened limbs, although the process of endochondral ossification proceeded as in wild-type mice. BrdU-uptake and apoptosis were both increased in chondrocytes, and the apoptosis-high regions were mineralized. These findings indicated that Antxr1, of which the expression is regulated by Runx2, plays an important role in chondrocyte proliferation and that overexpression of Antxr1 causes chondrocyte apoptosis accompanied by matrix mineralization.


Assuntos
Apoptose/fisiologia , Proliferação de Células/fisiologia , Condrócitos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas dos Microfilamentos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Cartilagem , Diferenciação Celular/fisiologia , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células Endoteliais , Feminino , Fêmur/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Mutação , Osteogênese/fisiologia , Receptores de Superfície Celular/genética , Esqueleto/embriologia , Esqueleto/patologia , Tíbia/patologia , Transcriptoma , Regulação para Cima
6.
Proc Natl Acad Sci U S A ; 117(13): 7296-7304, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170021

RESUMO

Hox genes are indispensable for the proper patterning of the skeletal morphology of the axial and appendicular skeleton during embryonic development. Recently, it has been demonstrated that Hox expression continues from embryonic stages through postnatal and adult stages exclusively in a skeletal stem cell population. However, whether Hox genes continue to function after development has not been rigorously investigated. We generated a Hoxd11 conditional allele and induced genetic deletion at adult stages to show that Hox11 genes play critical roles in skeletal homeostasis of the forelimb zeugopod (radius and ulna). Conditional loss of Hox11 function at adult stages leads to replacement of normal lamellar bone with an abnormal woven bone-like matrix of highly disorganized collagen fibers. Examining the lineage from the Hox-expressing mutant cells demonstrates no loss of stem cell population. Differentiation in the osteoblast lineage initiates with Runx2 expression, which is observed similarly in mutants and controls. With loss of Hox11 function, however, osteoblasts fail to mature, with no progression to osteopontin or osteocalcin expression. Osteocyte-like cells become embedded within the abnormal bony matrix, but they completely lack dendrites, as well as the characteristic lacuno-canalicular network, and do not express SOST. Together, our studies show that Hox11 genes continuously function in the adult skeleton in a region-specific manner by regulating differentiation of Hox-expressing skeletal stem cells into the osteolineage.


Assuntos
Osso e Ossos/embriologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Animais , Osso e Ossos/metabolismo , Diferenciação Celular , Condrócitos/metabolismo , Feminino , Membro Anterior/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Genes Homeobox/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Esqueleto/embriologia , Fatores de Transcrição/metabolismo
7.
Dev Dyn ; 249(2): 164-172, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665553

RESUMO

The papillae in the chicken embryonic eye, described as scleral papillae in the well-known Hamburger and Hamilton (1951) staging table, are one of the key anatomical features used to stage reptilian (including bird) embryos from HH30-36. These papillae are epithelial thickenings of the conjunctiva and are situated above the mesenchymal sclera. Here, we present evidence that the conjunctival papillae, which are required for the induction and patterning of the underlying scleral ossicles, require epithelial pre-patterning and have a placodal stage similar to other placode systems. We also suggest modifications to the Hamburger Hamilton staging criteria that incorporate this change in terminology (from "scleral" to "conjunctival" papillae) and provide a more detailed description of this anatomical feature that includes its placode stage. This enables a more complete and accurate description of chick embryo staging. The acknowledgment of a placode phase, which shares molecular and morphological features with other cutaneous placodes, will direct future research into the early inductive events leading to scleral ossicle formation.


Assuntos
Olho/embriologia , Répteis/embriologia , Animais , Embrião de Galinha , Esclera/embriologia , Esqueleto/embriologia
8.
Dev Dyn ; 249(4): 523-542, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31747096

RESUMO

BACKGROUND: Normal skeletal development, in particular ossification, joint formation and shape features of condyles, depends on appropriate mechanical input from embryonic movement but it is unknown how such physical stimuli are transduced to alter gene regulation. Hippo/Yes-Associated Protein (YAP) signalling has been shown to respond to the physical environment of the cell and here we specifically investigate the YAP effector of the pathway as a potential mechanoresponsive mediator in the developing limb skeleton. RESULTS: We show spatial localization of YAP protein and of pathway target gene expression within developing skeletal rudiments where predicted biophysical stimuli patterns and shape are affected in immobilization models, coincident with the period of sensitivity to movement, but not coincident with the expression of the Hippo receptor Fat4. Furthermore, we show that under reduced mechanical stimulation, in immobile, muscle-less mouse embryos, this spatial localization is lost. In culture blocking YAP reduces chondrogenesis but the effect differs depending on the timing and/or level of YAP reduction. CONCLUSIONS: These findings implicate YAP signalling, independent of Fat4, in the transduction of mechanical signals during key stages of skeletal patterning in the developing limb, in particular endochondral ossification and shape emergence, as well as patterning of tissues at the developing synovial joint.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Extremidades/embriologia , Esqueleto/embriologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Proteínas de Ciclo Celular/genética , Feminino , Masculino , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esqueleto/citologia , Esqueleto/metabolismo , Proteínas de Sinalização YAP
9.
PLoS Biol ; 17(9): e3000460, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532765

RESUMO

There is presently a very limited understanding of the mechanisms that underlie the evolution of new cell types. The skeleton-forming primary mesenchyme cells (PMCs) of euechinoid sea urchins, derived from the micromeres of the 16-cell embryo, are an example of a recently evolved cell type. All adult echinoderms have a calcite-based endoskeleton, a synapomorphy of the Ambulacraria. Only euechinoids have a micromere-PMC lineage, however, which evolved through the co-option of the adult skeletogenic program into the embryo. During normal development, PMCs alone secrete the embryonic skeleton. Other mesoderm cells, known as blastocoelar cells (BCs), have the potential to produce a skeleton, but a PMC-derived signal ordinarily prevents these cells from expressing a skeletogenic fate and directs them into an alternative developmental pathway. Recently, it was shown that vascular endothelial growth factor (VEGF) signaling plays an important role in PMC differentiation and is part of a conserved program of skeletogenesis among echinoderms. Here, we report that VEGF signaling, acting through ectoderm-derived VEGF3 and its cognate receptor, VEGF receptor (VEGFR)-10-Ig, is also essential for the deployment of the skeletogenic program in BCs. This VEGF-dependent program includes the activation of aristaless-like homeobox 1 (alx1), a conserved transcriptional regulator of skeletogenic specification across echinoderms and an example of a "terminal selector" gene that controls cell identity. We show that PMCs control BC fate by sequestering VEGF3, thereby preventing activation of alx1 and the downstream skeletogenic network in BCs. Our findings provide an example of the regulation of early embryonic cell fates by direct competition for a secreted signaling ligand, a developmental mechanism that has not been widely recognized. Moreover, they reveal that a novel cell type evolved by outcompeting other embryonic cell lineages for an essential signaling ligand that regulates the expression of a gene controlling cell identity.


Assuntos
Evolução Biológica , Embrião não Mamífero/citologia , Lytechinus/citologia , Mesoderma/citologia , Esqueleto/embriologia , Animais , Embrião não Mamífero/metabolismo , Lytechinus/metabolismo , Mesoderma/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
Development ; 146(16)2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331943

RESUMO

Alx1 is a conserved regulator of skeletogenesis in echinoderms and evolutionary changes in Alx1 sequence and expression have played a pivotal role in modifying programs of skeletogenesis within the phylum. Alx1 regulates a large suite of effector genes that control the morphogenetic behaviors and biomineral-forming activities of skeletogenic cells. To better understand the gene regulatory control of skeletogenesis by Alx1, we used genome-wide ChIP-seq to identify Alx1-binding sites and direct gene targets. Our analysis revealed that many terminal differentiation genes receive direct transcriptional inputs from Alx1. In addition, we found that intermediate transcription factors previously shown to be downstream of Alx1 all receive direct inputs from Alx1. Thus, Alx1 appears to regulate effector genes by indirect, as well as direct, mechanisms. We tested 23 high-confidence ChIP-seq peaks using GFP reporters and identified 18 active cis-regulatory modules (CRMs); this represents a high success rate for CRM discovery. Detailed analysis of a representative CRM confirmed that a conserved, palindromic Alx1-binding site was essential for expression. Our work significantly advances our understanding of the gene regulatory circuitry that controls skeletogenesis in sea urchins and provides a framework for evolutionary studies.


Assuntos
Proteínas de Homeodomínio/metabolismo , Ouriços-do-Mar/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Evolução Biológica , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Morfogênese/genética , Mutagênese , Ouriços-do-Mar/embriologia , Esqueleto/embriologia , Fatores de Transcrição/genética
11.
Genesis ; 56(6-7): e23219, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30134069

RESUMO

For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.


Assuntos
Padronização Corporal/fisiologia , Crista Neural/citologia , Crista Neural/fisiologia , Animais , Bico/embriologia , Osso e Ossos/embriologia , Região Branquial , Diferenciação Celular/fisiologia , Quimera/embriologia , Patos/embriologia , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Crista Neural/embriologia , Codorniz/embriologia , Esqueleto/embriologia , Crânio/embriologia , Especificidade da Espécie
12.
Stem Cell Reports ; 11(1): 228-241, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008325

RESUMO

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) regulates cellular function in various cell types. Although the role of mTORC1 in skeletogenesis has been investigated previously, here we show a critical role of mTORC1/4E-BPs/SOX9 axis in regulating skeletogenesis through its expression in undifferentiated mesenchymal cells. Inactivation of Raptor, a component of mTORC1, in limb buds before mesenchymal condensations resulted in a marked loss of both cartilage and bone. Mechanistically, we demonstrated that mTORC1 selectively controls the RNA translation of Sox9, which harbors a 5' terminal oligopyrimidine tract motif, via inhibition of the 4E-BPs. Indeed, introduction of Sox9 or a knockdown of 4E-BP1/2 in undifferentiated mesenchymal cells markedly rescued the deficiency of the condensation observed in Raptor-deficient mice. Furthermore, introduction of the Sox9 transgene rescued phenotypes of deficient skeletal growth in Raptor-deficient mice. These findings highlight a critical role of mTORC1 in mammalian skeletogenesis, at least in part, through translational control of Sox9 RNA.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Osteogênese/genética , Biossíntese de Proteínas , Fatores de Transcrição SOX9/genética , Esqueleto/metabolismo , Animais , Diferenciação Celular/genética , Expressão Gênica , Camundongos , Camundongos Transgênicos , Fenótipo , Fatores de Transcrição SOX9/metabolismo , Esqueleto/embriologia
13.
Dev Dyn ; 247(5): 724-740, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29330942

RESUMO

BACKGROUND: The caudal fin of actinopterygians experienced substantial morphological changes during evolution. In basal actinopterygians, the caudal fin skeleton supports an asymmetrical heterocercal caudal fin, while most teleosts have a symmetrical homocercal caudal fin. The transition from the ancestral heterocercal form to the derived homocercal caudal fin remains poorly understood. Few developmental studies provide an understanding of derived and ancestral characters among basal actinopterygians. To fill this gap, we examined the development of the caudal fin of spotted gar Lepisosteus oculatus, one of only eight living species of Holostei, the sister group to the teleosts. RESULTS: Our observations of animals from fertilization to more than a year old provide the most detailed description of the development of caudal fin skeletal elements in any Holostean species. We observed two different types of distal caudal radials replacing two transient plates of connective tissue, identifying two hypaxial ensembles separated by a space between hypurals 2 and 3. These features have not been described in any gar species, but can be observed in other gar species, and thus represent anatomical structures common to lepisosteiformes. CONCLUSIONS: The present work highlights the power and importance of ontogenic studies and provides bases for future evolutionary and morphological investigations on actinopterygians fins. Developmental Dynamics 247:724-740, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Nadadeiras de Animais/embriologia , Peixes/embriologia , Animais , Evolução Biológica , Esqueleto/embriologia
14.
J R Soc Interface ; 15(138)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29367236

RESUMO

Mechanical forces generated by fetal kicks and movements result in stimulation of the fetal skeleton in the form of stress and strain. This stimulation is known to be critical for prenatal musculoskeletal development; indeed, abnormal or absent movements have been implicated in multiple congenital disorders. However, the mechanical stress and strain experienced by the developing human skeleton in utero have never before been characterized. Here, we quantify the biomechanics of fetal movements during the second half of gestation by modelling fetal movements captured using novel cine-magnetic resonance imaging technology. By tracking these movements, quantifying fetal kick and muscle forces, and applying them to three-dimensional geometries of the fetal skeleton, we test the hypothesis that stress and strain change over ontogeny. We find that fetal kick force increases significantly from 20 to 30 weeks' gestation, before decreasing towards term. However, stress and strain in the fetal skeleton rises significantly over the latter half of gestation. This increasing trend with gestational age is important because changes in fetal movement patterns in late pregnancy have been linked to poor fetal outcomes and musculoskeletal malformations. This research represents the first quantification of kick force and mechanical stress and strain due to fetal movements in the human skeleton in utero, thus advancing our understanding of the biomechanical environment of the uterus. Further, by revealing a potential link between fetal biomechanics and skeletal malformations, our work will stimulate future research in tissue engineering and mechanobiology.


Assuntos
Desenvolvimento Fetal/fisiologia , Feto , Desenvolvimento Musculoesquelético/fisiologia , Esqueleto , Estresse Fisiológico/fisiologia , Feminino , Feto/diagnóstico por imagem , Feto/embriologia , Humanos , Masculino , Esqueleto/diagnóstico por imagem , Esqueleto/embriologia
15.
PLoS One ; 12(9): e0184473, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934221

RESUMO

BACKGROUND: Platelet-derived growth factor receptor alpha (PDGFRα) is a cell-surface receptor tyrosine kinase for platelet-derived growth factors. Correct timing and level of Pdgfra expression is crucial for embryo development, and deletion of Pdgfra caused developmental defects of multiple endoderm and mesoderm derived structures, resulting in a complex phenotypes including orofacial cleft, spina bifida, rib deformities, and omphalocele in mice. However, it is not clear if deletion of Pdgfra at different embryonic stages differentially affects these structures. PURPOSE: To address the temporal requirement of Pdgfra in embryonic development. METHODS: We have deleted the Pdgfra in Pdgfra-expressing tissues at different embryonic stages in mice, examined and quantified the developmental anomalies. RESULTS: Current study showed that (i) conditional deletion of Pdgfra at different embryonic days (between E7.5 and E10.5) resulted in orofacial cleft, spina bifida, rib cage deformities, and omphalocele, and (ii) the day of Pdgfra deletion influenced the combinations, incidence and severities of these anomalies. Deletion of Pdgfra caused apoptosis of Pdgfra-expressing tissues, and developmental defects of their derivatives. CONCLUSION: Orofacial cleft, spina bifida and omphalocele are among the commonest skeletal and abdominal wall defects of newborns, but their genetic etiologies are largely unknown. The remarkable resemblance of our conditional Pdgfra knockout embryos to theses human congenital anomalies, suggesting that dysregulated PDGFRA expression could cause these anomalies in human. Future work should aim at defining (a) the regulatory elements for the expression of the human PDGFRA during embryonic development, and (b) if mutations / sequence variations of these regulatory elements cause these anomalies.


Assuntos
Desenvolvimento Embrionário/fisiologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Parede Abdominal/anormalidades , Parede Abdominal/embriologia , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Apoptose/fisiologia , Fenda Labial/embriologia , Fenda Labial/genética , Fenda Labial/metabolismo , Fissura Palatina/embriologia , Fissura Palatina/genética , Fissura Palatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Hérnia Umbilical/embriologia , Hérnia Umbilical/genética , Hérnia Umbilical/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Esqueleto/anormalidades , Esqueleto/embriologia , Esqueleto/metabolismo , Disrafismo Espinal/embriologia , Disrafismo Espinal/genética , Disrafismo Espinal/metabolismo , Tamoxifeno , Fatores de Tempo
16.
An Acad Bras Cienc ; 89(1 Suppl 0): 635-647, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28562829

RESUMO

The development of DBA/2J mouse strain embryos is nearly 12 h - or 6 somite pairs - delayed as compared to the outbred NMRI mouse embryos of the same age on gestation days (GD) 8-12. To evaluate inter-strain differences in susceptibility to teratogens, dams were treated with methylnitrosourea (MNU, 5 mg/kg body weight i.p.) on defined gestation days (NMRI: GD 9, 91/2 or 10; DBA/2J: GD 10 or 101/2). Skeletal anomalies produced by MNU on both mouse strains varied with the GD of treatment. The pattern of anomalies produced by MNU on a given GD markedly differed between the two mouse strains, yet they were similar -with a few exceptions- when exposures at equivalent embryonic stages are compared. Findings from this study indicated that strain-dependent differences in the developmental stage of mouse embryos of the same gestational age occur, a possibility that has been often neglected when inter-strain differences in susceptibility to developmental toxicants are interpreted.


Assuntos
Embrião de Mamíferos/anormalidades , Desenvolvimento Embrionário/efeitos dos fármacos , Metilnitrosoureia/toxicidade , Esqueleto/anormalidades , Somitos/anormalidades , Teratógenos/toxicidade , Animais , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos DBA , Gravidez , Esqueleto/efeitos dos fármacos , Esqueleto/embriologia , Somitos/efeitos dos fármacos , Somitos/embriologia
17.
Int. j. morphol ; 35(2): 629-636, June 2017. ilus
Artigo em Inglês | LILACS | ID: biblio-893032

RESUMO

Fetal period of time during which the fetus grows rapidly and the organs are formed. The prenatal and postnatal analyses of the fetal structure provide information as to fetal growth, growth retardation, gestational age and congenital malformations. The development of the skeletal system during the intrauterine period takes place in an orderly manner as it also does in other systems. It was aimed that the morphometric development of the forearm in human fetuses during the period between 20-40 gestational weeks be radiologically investigated and that its clinical importance be evaluated, as well. A total of 100 fetal forearms (50 fetuses: 23 male, 27 female), the ages of which varied between 20-40 gestational weeks, without having any external pathology or anomaly were incorporated into the study. The fetuses were separated into groups according to weeks, trimesters and months. After the general external measurements of the fetuses had been performed, the mammographies and forearm radiographies of the fetuses were shot in the way that the forearms would remain in a prone position. Morphometric measurements pertaining to forearm structures were taken from the forearm radiographies that were shot with the help of a digital compass. Later on, the morphometric measurements in question were statistically evaluated. The mean values and the standard deviations of the measured parameters were determined according to gestational weeks, trimesters and months. There was a significant correlation between the measured parameters and the gestational age (p<0.001). In the comparison of the measured parameters between trimesters and months, it was observed that there was a statistically significant difference between the groups (p<0.05). Separately, it was also determined that there was no statistically significant difference in the comparison of the parameters, which was made between genders and right-left forearms (p>0.05). As for the results obtained in our study, we are of the opinion that the data obtained during this study period will be beneficial for the involved clinicians, such as those in charge of gynecology, radiology, forensic medicine and perinatology, in terms of evaluating the clinical studies related to the morphometric development of the forearm throughout the fetal period, in determining the fetal age and sex, and also in determining the pathologies and variations regarding the development of fetal skeletal system.


El período fetal es el tiempo en el cual el feto crece rápidamente y se forman los órganos. Los análisis prenatal y postnatal de la estructura fetal proporcionan información sobre el crecimiento fetal, el retraso de crecimiento, la edad gestacional y las malformaciones congénitas. El desarrollo del sistema esquelético, como también el de otros sistemas durante el período intrauterino, avanza de manera ordenada. Se investigó radiológicamente el desarrollo morfométrico del antebrazo en fetos humanos durante el período comprendido entre 20-40 semanas gestacionales y se evaluó su importancia clínica. Un total de 100 antebrazos fetales (50 fetos: 23 de sexo masculino, 27 de sexo femenino), cuya edad varió entre 20-40 semanas de gestación, sin patología externa o anomalía, fueron incluidos en el estudio. Los fetos fueron separados en grupos de semanas, trimestres y meses. Después de realizar las mediciones externas generales de los fetos, las mamografías y las radiografías fueron realizadas de tal manera que los antebrazos permanecieran en pronación. Las radiografías de las medidas morfométricas correspondientes a las estructuras del antebrazo se tomaron con apoyo de una compás digital; posteriormente, las medidas fueron tratadas estadísticamente. Los valores medios y las desviaciones estándar de los parámetros medidos se determinaron de acuerdo con las semanas de gestación, los trimestres y los meses. Hubo una correlación significativa entre los parámetros medidos y la edad gestacional (p <0,001). En la comparación de los parámetros medidos entre los trimestres y los meses, se observó una diferencia estadísticamente significativa entre los grupos (p <0,05). Se determinó también que no hubo diferencias estadísticamente significativas en la comparación de los parámetros, que se realizó entre los sexos y los antebrazos derecho-izquierdo (p> 0,05). En cuanto a los resultados de nuestro estudio, los datos obtenidos durante este período de estudio serán beneficiosos para los clínicos, como también para profesionales de las áreas de ginecología, radiología, medicina forense y perinatología, en la evaluación de estudios clínicos relacionados con el desarrollo morfométrico del antebrazo durante todo el período fetal, determinación de la edad y el sexo fetal, así como en la determinación de variaciones en el desarrollo del sistema esquelético fetal.


Assuntos
Humanos , Masculino , Feminino , Gravidez , Desenvolvimento Embrionário e Fetal , Antebraço/diagnóstico por imagem , Antebraço/embriologia , Esqueleto/embriologia
18.
An. acad. bras. ciênc ; 89(1,supl): 635-647, May. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886672

RESUMO

ABSTRACT The development of DBA/2J mouse strain embryos is nearly 12 h - or 6 somite pairs - delayed as compared to the outbred NMRI mouse embryos of the same age on gestation days (GD) 8-12. To evaluate inter-strain differences in susceptibility to teratogens, dams were treated with methylnitrosourea (MNU, 5 mg/kg body weight i.p.) on defined gestation days (NMRI: GD 9, 91/2 or 10; DBA/2J: GD 10 or 101/2). Skeletal anomalies produced by MNU on both mouse strains varied with the GD of treatment. The pattern of anomalies produced by MNU on a given GD markedly differed between the two mouse strains, yet they were similar -with a few exceptions- when exposures at equivalent embryonic stages are compared. Findings from this study indicated that strain-dependent differences in the developmental stage of mouse embryos of the same gestational age occur, a possibility that has been often neglected when inter-strain differences in susceptibility to developmental toxicants are interpreted.


Assuntos
Animais , Feminino , Gravidez , Ratos , Esqueleto/anormalidades , Teratógenos/toxicidade , Somitos/anormalidades , Desenvolvimento Embrionário/efeitos dos fármacos , Embrião de Mamíferos/anormalidades , Metilnitrosoureia/toxicidade , Esqueleto/efeitos dos fármacos , Esqueleto/embriologia , Somitos/efeitos dos fármacos , Somitos/embriologia , Embrião de Mamíferos/efeitos dos fármacos , Camundongos Endogâmicos DBA
19.
Dev Dyn ; 245(11): 1066-1080, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507212

RESUMO

BACKGROUND: Environmental temperature influences rates of embryonic development, but a detailed staging series for vertebrate embryos developing in the subzero cold of Antarctic waters is not yet available from fertilization to hatching. Given projected warming of the Southern Ocean, it is imperative to establish a baseline to evaluate potential effects of changing climate on fish developmental dynamics. RESULTS: We studied the Bullhead notothen (Notothenia coriiceps), a notothenioid fish inhabiting waters between -1.9 and +2 °C. In vitro fertilization produced embryos that progressed through cleavage, epiboly, gastrulation, segmentation, organogenesis, and hatching. We compared morphogenesis spatially and temporally to Zebrafish and medaka. Experimental animals hatched after about 6 months to early larval stages. To help understand skeletogenesis, we analyzed late embryos for expression of sox9 and runx2, which regulate chondrogenesis, osteogenesis, and eye development. Results revealed that, despite their prolonged developmental time course, N. coriiceps embryos developed similarly to those of other teleosts with large yolk cells. CONCLUSIONS: Our studies set the stage for future molecular analyses of development in these extremophile fish. Results provide a foundation for understanding the impact of ocean warming on embryonic development and larval recruitment of notothenioid fish, which are key factors in the marine trophic system. Developmental Dynamics 245:1066-1080, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Desenvolvimento Embrionário/fisiologia , Esqueleto/embriologia , Esqueleto/metabolismo , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Masculino , Oryzias/embriologia , Oryzias/metabolismo , Perciformes/embriologia , Perciformes/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
20.
J Bone Miner Res ; 31(7): 1391-404, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26890219

RESUMO

Cbfb is a cotranscription factor that forms a heterodimer with Runx proteins Runx1, Runx2, and Runx3. It is required for fetal liver hematopoiesis and skeletal development. Cbfb has two functional isoforms, Cbfb1 and Cbfb2, which are formed by alternative splicing. To address the biological functions of these isoforms in skeletal development, we examined Cbfb1(-/-) and Cbfb2(-/-) mouse embryos. Intramembranous and endochondral ossification was retarded and chondrocyte and osteoblast differentiation was inhibited in Cbfb2(-/-) embryos but not in Cbfb1(-/-) embryos. Cbfb2 mRNA was upregulated in calvariae, limbs, livers, thymuses, and hearts of Cbfb1(-/-) embryos but Cbfb1 mRNA was not in those of Cbfb2(-/-) embryos, and the total amount of Cbfb1 and Cbfb2 mRNA in Cbfb1(-/-) embryos was similar to that in wild-type embryos but was severely reduced in Cbfb2(-/-) embryos. The absolute numbers of Cbfb2 mRNA in calvariae, limbs, livers, thymuses, and brains in wild-type embryos were about three times higher than those of Cbfb1 in the respective tissue. The levels of Runx proteins were reduced in calvariae, limbs, and primary osteoblasts from Cbfb2(-/-) embryos, but the reduction in Runx2 protein was very mild. Furthermore, the amounts of Runx proteins and Cbfb in Cbfb2(-/-) embryos differed similarly among skeletal tissues, livers, and thymuses, suggesting that Runx proteins and Cbfb are mutually required for their stability. Although Cbfb1(-/-) embryos developed normally, Cbfb1 induced chondrocyte and osteoblast differentiation and enhanced DNA binding of Runx2 more efficiently than Cbfb2. Our results indicate that modulations in the relative levels of the isoforms may adjust transcriptional activation by Runx2 to appropriate physiological levels. Cbfb2 was more abundant, but Cbfb1 was more potent for enhancing Runx2 activity. Although only Cbfb2 loss generated overt skeletal phenotypes, both may play major roles in skeletal development with functional redundancy. © 2016 American Society for Bone and Mineral Research.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Condrócitos/metabolismo , Embrião de Mamíferos/embriologia , Osteoblastos/metabolismo , Esqueleto/embriologia , Animais , Fator de Ligação a CCAAT/genética , Condrócitos/citologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Esqueleto/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...